- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Fan, Jing (3)
-
Li, Yan (3)
-
Wang, Wen‐Ming (3)
-
Xiao, Shunyuan (3)
-
Zhao, Zhi‐Xue (3)
-
Huang, Yan‐Yan (2)
-
Xu, Yong‐Ju (2)
-
Zhao, Jing‐Hao (2)
-
Zhao, Ji‐Qun (2)
-
Chen, Xuewei (1)
-
Feng, Qin (1)
-
Hassan, Beenish (1)
-
He, Xiao‐Rong (1)
-
Hu, Xiao‐Hong (1)
-
Lei, Yang (1)
-
Li, Guo‐Bang (1)
-
Li, Qin (1)
-
Liu, Peng‐Qiang (1)
-
Pu, Mei (1)
-
Wang, He (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 physically associated with RPW8.2 with its RING finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase of RPW8.2 in the nucleus. In turn, the nucleus-localised RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity.more » « less
-
Zhao, Zhi‐Xue; Feng, Qin; Liu, Peng‐Qiang; He, Xiao‐Rong; Zhao, Jing‐Hao; Xu, Yong‐Ju; Zhang, Ling‐Li; Huang, Yan‐Yan; Zhao, Ji‐Qun; Fan, Jing; et al (, New Phytologist)null (Ed.)
-
Zhao, Zhi‐Xue; Xu, Yong‐Ju; Lei, Yang; Li, Qin; Zhao, Ji‐Qun; Li, Yan; Fan, Jing; Xiao, Shunyuan; Wang, Wen‐Ming (, Journal of Integrative Plant Biology)Abstract Study on the regulation of broad‐spectrum resistance is an active area in plant biology.RESISTANCE TO POWDERY MILDEW 8.1(RPW8.1) is one of a few broad‐spectrum resistance genes triggering the hypersensitive response (HR) to restrict multiple pathogenic infections. To address the question how RPW8.1 signaling is regulated, we performed a genetic screen and tried to identify mutations enhancing RPW8.1‐mediated HR. Here, we provided evidence to connect an annexin protein with RPW8.1‐mediated resistance inArabidopsisagainst powdery mildew. We isolated and characterizedArabidopsis b7‐6mutant. A point mutation inb7‐6at theAt5g12380locus resulted in an amino acid substitution in ANNEXIN 8 (AtANN8). Loss‐of‐function or RNA‐silencing ofAtANN8led to enhanced expression ofRPW8.1, RPW8.1‐dependent necrotic lesions in leaves, and defense against powdery mildew. Conversely, over‐expression ofAtANN8compromised RPW8.1‐mediated disease resistance and cell death. Interestingly, the mutation in AtANN8 enhanced RPW8.1‐triggered H2O2. In addition, mutation in AtANN8 led to hypersensitivity to salt stress. Together, our data indicate that AtANN8 is involved in multiple stress signaling pathways and negatively regulates RPW8.1‐mediated resistance against powdery mildew and cell death, thus linking ANNEXIN's function with plant immunity.more » « less
An official website of the United States government
